Technical Note 32 LabSense Application Questionnaire

Pi are committed to ensuring that you get the best experience from your LabSense. To ensure that the LabSense is suitable to meet your coagulation control objectives we need the following information to get every installation right first time, every time. When you have completed the form please email it to your local sales organization or direct to the factory.

Contact Info				
Name				
E-mail				Dennity Cornel Like -100
Mobile No				
Plant Name				,
Town				
Country				
Date				
Application				and the same
1. Raw Water Data (pleas	e indicate units e.g. MGD	, m³/hr, ml/min, etc.):		
Flow	Typical:	Min:	Max:	
Alkalinity	Typical:	Min:	Max:	
рН	Typical:	Min:	Max:	
TOC/UVA	Typical:	Min:	Max:	
Turbidity (NTU)	Typical:	Min:	Max:	
pH (Post Coag)	Typical:	Min:	Max:	
2. Is jar testing routinely	performed? Yes	No		
3. Primary Coagulant				
Please list actual coagu	ılant type (aluminum sulf	ate, ferric chloride, poly	yaluminum chloride/PAC e	etc.), and chemical
concentration if known	(e.g. 48.5% aluminum s	ulfate, 8% Al ₂ O ₃). If co	agulant is a pre-hydrolyze	ed product (e.g. PAC),
please list basicity of tl	he product.			
Chemical Concentration	n¹% Weight/S0	G ² Bas	sicity (PAC/PAS)	%
Because WTP's can cal	culate their dosage variou	us ways, we ask that yo	ou provide both the feed r	ate in ml/min as well as the
ppm or mg/l dosage. T	his allows us to work out	how dosage is being ca	alculated (e.g. as liquid pr	oduct, as dry aluminum
sulfate, as aluminum o	oxide, or as aluminum). The	his is very important to	establishing the proper in	nstruments settings on the
LabSense for automati	c titration and dosage de	termination purposes.		
Coagulant Feed Rate (e.g. ml/min) Typical:	Min:	Max:	
	m or mg/l) Typical:			

4. Secondary Coagulant				
A secondary coagulant is defined a	s any inorganic or orgar	nic product that is fed	d along with the prima	ary coagulant that aids
in charge neutralization (e.g. a low	molecular weight polyn	ner like DADMAC). Pl	lease list actual coagu	lant type (aluminum
sulfate, ferric chloride, polyaluminu	ım chloride/PAC etc.), a	nd chemical concent	ration if known (e.g. 4	18.5% aluminum
sulfate, 8% Al ₂ O ₃). If coagulant is	a pre-hydrolyzed produc	ct (e.g. PAC), please	list basicity of the pro	duct.
Chemical Concentration ¹	.% Weight/SG ²	Basicity (PAC/PAS)		%
Coagulant Feed Rate (e.g. ml/min)	Typical:	Min:	Max:	
Coagulant Dosage (ppm or mg/l)	Typical:	Min:	Max:	
5. Flocculant				
Flocculant is a high molecular weig			particles into larger flo	oc agglomerations.
Please list actual polymer type and	polymer concentration.			
Anionic/Cationic Concentration ¹	%			
Coagulant Feed Rate (e.g. ml/min)	Typical:	Min:	Max:	
Coagulant Dosage (ppm or mg/l)	Typical:	Min:	Max:	
Provide the chemical concentration	value that is used in the	dosage calculation (e.g. 48% is commonl	y used for Alum when
calculating as dry aluminum sulfate	٠).			
² Provide the weight or specific gravit	y of the chemical.			
6. List all other chemicals (chlorine, c	austic, potassium perma	anganate, filter aids	etc.), that are fed ups	tream of filtration
along with their typical dosage.				

Drawing

Please provide a simple plant diagram (hand sketch) that describes the process and shows points of chemical addition. Something like this:

